Abstract – Consequences of potential density-dependent mechanisms on recovery of ocean-type chinook salmon

Abstract

2004: Consequences of potential density-dependent mechanisms on recovery of ocean-type chinook salmon (Oncorhynchus tshawytscha). Canadian Journal of Fisheries and Aquatic Sciences, 61: 590–602.
Correigh Greene and Tim Beechie

Restoring salmon populations depends on our ability to predict the consequences of improving aquatic habitats used by salmon. Using a Leslie matrix model for chinook salmon (Oncorhynchus tshawytscha) that specifies transitions among spawning nests (redds), streams, tidal deltas, nearshore habitats, and the ocean, we compared the relative importance of different habitats under three density-dependent scenarios: juvenile density independence, density-dependent mortality within streams, delta, and nearshore, and density-dependent migration among streams, delta, and nearshore. Each scenario assumed density dependence during spawning. We examined how these scenarios influenced priorities for habitat restoration using a set of hypothetical watersheds whose habitat areas could be systematically varied, as well as the Duwamish and Skagit rivers. In all watersheds, the three scenarios shared high sensitivity to changes in in nearshore and ocean mortality and produced similar responses to changes in other parameters controlling mortality (i.e., habitat quality). However, the three scenarios exhibited striking variation in population response to changes in habitat area (i.e., capacity). These findings indicate that nearshore habitat relationships may play significant roles for salmon populations and that the relative importance of restoring habitat area will depend on the mechanism of density dependence influencing salmon stocks.

EMAIL TO RECEIVE FULL REPORT